Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 66, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331935

RESUMO

Histone lysine crotonylation (Kcr) is a new acylation modification first discovered in 2011, which has important biological significance for gene expression, cell development, and disease treatment. In the past over ten years, numerous signs of progress have been made in the research on the biochemistry of Kcr modification, especially a series of Kcr modification-related "reader", "eraser", and "writer" enzyme systems are identified. The physiological function of crotonylation and its correlation with development, heredity, and spermatogenesis have been paid more and more attention. However, the development of disease is usually associated with abnormal Kcr modification. In this review, we summarized the identification of crotonylation modification, Kcr-related enzyme system, biological functions, and diseases caused by abnormal Kcr. This knowledge supplies a theoretical basis for further exploring the function of crotonylation in the future.

2.
Adv Sci (Weinh) ; 10(34): e2304329, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870216

RESUMO

PIWI-interacting RNAs (piRNAs) are highly expressed in various cardiovascular diseases. However, their role in cardiomyocyte death caused by ischemia/reperfusion (I/R) injury, especially necroptosis, remains elusive. In this study, a heart necroptosis-associated piRNA (HNEAP) is found that regulates cardiomyocyte necroptosis by targeting DNA methyltransferase 1 (DNMT1)-mediated 5-methylcytosine (m5 C) methylation of the activating transcription factor 7 (Atf7) mRNA transcript. HNEAP expression level is significantly elevated in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes and I/R-injured mouse hearts. Loss of HNEAP inhibited cardiomyocyte necroptosis and ameliorated cardiac function in mice. Mechanistically, HNEAP directly interacts with DNMT1 and attenuates m5 C methylation of the Atf7 mRNA transcript, which increases Atf7 expression level. ATF7 can further downregulate the transcription of Chmp2a, an inhibitor of necroptosis, resulting in the reduction of Chmp2a level and the progression of cardiomyocyte necroptosis. The findings reveal that piRNA-mediated m5 C methylation is involved in the regulation of cardiomyocyte necroptosis. Thus, the HNEAP-DNMT1-ATF7-CHMP2A axis may be a potential target for attenuating cardiac injury caused by necroptosis in ischemic heart disease.


Assuntos
Miócitos Cardíacos , Traumatismo por Reperfusão , Camundongos , Animais , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , RNA de Interação com Piwi , Necroptose/genética , Metilação , Traumatismo por Reperfusão/metabolismo , Fatores Ativadores da Transcrição/metabolismo
3.
Cell Death Differ ; 30(7): 1786-1798, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286744

RESUMO

The mitochondrial transmembrane (TMEM) protein family has several essential physiological functions. However, its roles in cardiomyocyte proliferation and cardiac regeneration remain unclear. Here, we detected that TMEM11 inhibits cardiomyocyte proliferation and cardiac regeneration in vitro. TMEM11 deletion enhanced cardiomyocyte proliferation and restored heart function after myocardial injury. In contrast, TMEM11-overexpression inhibited neonatal cardiomyocyte proliferation and regeneration in mouse hearts. TMEM11 directly interacted with METTL1 and enhanced m7G methylation of Atf5 mRNA, thereby increasing ATF5 expression. A TMEM11-dependent increase in ATF5 promoted the transcription of Inca1, an inhibitor of cyclin-dependent kinase interacting with cyclin A1, which suppressed cardiomyocyte proliferation. Hence, our findings revealed that TMEM11-mediated m7G methylation is involved in the regulation of cardiomyocyte proliferation, and targeting the TMEM11-METTL1-ATF5-INCA1 axis may serve as a novel therapeutic strategy for promoting cardiac repair and regeneration.


Assuntos
Miócitos Cardíacos , Processamento de Proteína Pós-Traducional , Animais , Camundongos , Proliferação de Células/genética , Metilação , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Mol Ther ; 31(3): 847-865, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639869

RESUMO

The role of Abraxas 2 (ABRO1 or KIAA0157), a component of the lysine63-linked deubiquitinating system, in the cardiomyocyte proliferation and myocardial regeneration is unknown. Here, we found that ABRO1 regulates cardiomyocyte proliferation and cardiac regeneration in the postnatal heart by targeting METTL3-mediated m6A methylation of Psph mRNA. The deletion of ABRO1 increased cardiomyocyte proliferation in hearts and restored the heart function after myocardial injury. On the contrary, ABRO1 overexpression significantly inhibited the neonatal cardiomyocyte proliferation and cardiac regeneration in mouse hearts. The mechanism by which ABRO1 regulates cardiomyocyte proliferation mainly involved METTL3-mediated Psph mRNA methylation and CDK2 phosphorylation. In the early postnatal period, METTL3-dependent m6A methylation promotes cardiomyocyte proliferation by hypermethylation of Psph mRNA and upregulating PSPH expression. PSPH dephosphorylates cyclin-dependent kinase 2 (CDK2), a positive regulator of cell cycle, at Thr14/Tyr15 and increases its activity. Upregulation of ABRO1 restricts METTL3 activity and halts the cardiomyocyte proliferation in the postnatal hearts. Thus, our study reveals that ABRO1 is an essential contributor in the cell cycle withdrawal and attenuation of proliferative response in the postnatal cardiomyocytes and could act as a potential target to accelerate cardiomyocyte proliferation and cardiac repair in the adult heart.


Assuntos
Miocárdio , Miócitos Cardíacos , Proteínas Associadas à Matriz Nuclear , Monoéster Fosfórico Hidrolases , Animais , Camundongos , Animais Recém-Nascidos , Proliferação de Células , Coração/fisiologia , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
5.
Cell Death Discov ; 8(1): 394, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127318

RESUMO

The mechanism of cardiovascular diseases (CVDs) is complex and threatens human health. Cardiomyocyte death is an important participant in the pathophysiological basis of CVDs. Ferroptosis is a new type of iron-dependent programmed cell death caused by excessive accumulation of iron-dependent lipid peroxides and reactive oxygen species (ROS) and abnormal iron metabolism. Ferroptosis differs from other known cell death pathways, such as apoptosis, necrosis, necroptosis, autophagy and pyroptosis. Several compounds have been shown to induce or inhibit ferroptosis by regulating related key factors or signalling pathways. Recent studies have confirmed that ferroptosis is associated with the development of diverse CVDs and may be a potential therapeutic drug target for CVDs. In this review, we summarize the characteristics and related mechanisms of ferroptosis and focus on its role in CVDs, with the goal of inspiring novel treatment strategies.

6.
Adv Sci (Weinh) ; 9(8): e2106058, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35138696

RESUMO

PIWI-interacting RNAs (piRNAs) are abundantly expressed in heart. However, their functions and molecular mechanisms during myocardial infarction remain unknown. Here, a heart-apoptosis-associated piRNA (HAAPIR), which regulates cardiomyocyte apoptosis by targeting N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4 C) acetylation of transcription factor EC (Tfec) mRNA transcript, is identified. HAAPIR deletion attenuates ischemia/reperfusion induced myocardial infarction and ameliorate cardiac function compared to WT mice. Mechanistically, HAAPIR directly interacts with NAT10 and enhances ac4 C acetylation of Tfec mRNA transcript, which increases Tfec expression. TFEC can further upregulate the transcription of BCL2-interacting killer (Bik), a pro-apoptotic factor, which results in the accumulation of Bik and progression of cardiomyocyte apoptosis. The findings reveal that piRNA-mediated ac4 C acetylation mechanism is involved in the regulation of cardiomyocyte apoptosis. HAAPIR-NAT10-TFEC-BIK signaling axis can be potential target for the reduction of myocardial injury caused by cardiomyocyte apoptosis in ischemia heart diseases.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Acetilação , Acetiltransferases/metabolismo , Animais , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , RNA Mensageiro , RNA Interferente Pequeno/metabolismo
7.
Mol Cell Biochem ; 477(2): 417-430, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34780000

RESUMO

Circular RNAs (circRNAs), a novel class of endogenous noncoding RNA, are characterized by their covalently closed-loop structures without a 5' cap or a 3' poly(A) tail. With the evolution of high-throughput sequencing technology and bioinformatics, an increasing number of circRNAs have been discovered, and their functions were highlighted. Cardiovascular diseases (CVDs) have become the world's leading killers, with serious impacts on human health. Although significant progress has been made in clarifying the development of CVDs from the molecular to the cellular level, CVDs remain one of the leading causes of death in humans. circRNAs mainly function as a "sponge" to absorb microRNAs, which results in the positive control of downstream proteins. They play important regulatory roles in the development of CVDs. This paper reviews current knowledge on the biogenesis, detection and validation, translation, translocation and degradation, and general functions of circRNAs, with a focus on their roles in CVDs.


Assuntos
Doenças Cardiovasculares , RNA Circular , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo
8.
Cell Death Differ ; 29(3): 527-539, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34588633

RESUMO

Circular RNAs (circRNAs) are differentially expressed in various cardiovascular disease including myocardial ischemia-reperfusion (I/R) injury. However, their functional impact on cardiomyocyte cell death, in particular, in necrotic forms of death remains elusive. In this study, we found that the level of mmu_circ_000338, a cardiac- necroptosis-associated circRNA (CNEACR), was reduced in hypoxia-reoxygenation (H/R) exposed cardiomyocytes and I/R-injured mice hearts. The enforced expression of CNEACR attenuated the necrotic form of cardiomyocyte death caused by H/R and suppressed of myocardial necrosis in I/R injured mouse heart, which was accompanied by a marked reduction of myocardial infarction size and improved cardiac function. Mechanistically, CNEACR directly binds to histone deacetylase (HDAC7) in the cytoplasm and interferes its nuclear entry. This leads to attenuation of HDAC7-dependent suppression of forkhead box protein A2 (Foxa2) transcription, which can repress receptor-interacting protein kinase 3 (Ripk3) gene by binding to its promoter region. In addition, CNEACR-mediated upregulation of FOXA2 inhibited RIPK3-dependent necrotic/necroptotic death of cardiomyocytes. Our study reveals that circRNAs such as CNEACR can regulate the cardiomyocyte necroptosis associated activity of HDACs, promotes cell survival and improves cardiac function in I/R-injured heart. Hence, the CNEACR/HDAC7/Foxa2/ RIPK3 axis could be an efficient target for alleviating myocardial damage caused by necroptotic death in ischemia heart diseases.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Fator 3-beta Nuclear de Hepatócito/metabolismo , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Necroptose , RNA Circular/genética
9.
J Cell Mol Med ; 25(11): 4893-4901, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33942984

RESUMO

PIWI-interacting RNAs (piRNAs) are recently discovered small non-coding RNAs consisting of 24-35 nucleotides, usually including a characteristic 5-terminal uridine and an adenosine at position 10. PIWI proteins can specifically bind to the unique structure of the 3' end of piRNAs. In the past, it was thought that piRNAs existed only in the reproductive system, but recently, it was reported that piRNAs are also expressed in several other human tissues with tissue specificity. Growing evidence shows that piRNAs and PIWI proteins are abnormally expressed in various diseases, including cancers, neurodegenerative diseases and ageing, and may be potential biomarkers and therapeutic targets. This review aims to discuss the current research status regarding piRNA biogenetic processes, functions, mechanisms and emerging roles in various diseases.


Assuntos
Envelhecimento , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , RNA Interferente Pequeno/genética , Animais , Epigênese Genética , Humanos , Neoplasias/genética , Doenças Neurodegenerativas/genética
10.
Nat Cell Biol ; 22(11): 1319-1331, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020597

RESUMO

PIWI-interacting RNAs (piRNAs) are abundantly expressed during cardiac hypertrophy. However, their functions and molecular mechanisms remain unknown. Here, we identified a cardiac-hypertrophy-associated piRNA (CHAPIR) that promotes pathological hypertrophy and cardiac remodelling by targeting METTL3-mediated N6-methyladenosine (m6A) methylation of Parp10 mRNA transcripts. CHAPIR deletion markedly attenuates cardiac hypertrophy and restores heart function, while administration of a CHAPIR mimic enhances the pathological hypertrophic response in pressure-overloaded mice. Mechanistically, CHAPIR-PIWIL4 complexes directly interact with METTL3 and block the m6A methylation of Parp10 mRNA transcripts, which upregulates PARP10 expression. The CHAPIR-dependent increase in PARP10 promotes the mono-ADP-ribosylation of GSK3ß and inhibits its kinase activity, which results in the accumulation of nuclear NFATC4 and the progression of pathological hypertrophy. Hence, our findings reveal that a piRNA-mediated RNA epigenetic mechanism is involved in the regulation of cardiac hypertrophy and that the CHAPIR-METTL3-PARP10-NFATC4 signalling axis could be therapeutically targeted for treating pathological hypertrophy and maladaptive cardiac remodelling.


Assuntos
Adenosina/análogos & derivados , Ventrículos do Coração/enzimologia , Hipertrofia Ventricular Esquerda/enzimologia , Metiltransferases/metabolismo , Miócitos Cardíacos/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Função Ventricular Esquerda , Adenosina/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Ventrículos do Coração/patologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Metilação , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Proteínas Proto-Oncogênicas/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Remodelação Ventricular
11.
Theranostics ; 10(2): 553-566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903137

RESUMO

Mitochondrial dysfunction is involved in the pathogenesis of various cardiovascular disorders. Although mitochondrial dynamics, including changes in mitochondrial fission and fusion, have been implicated in the development of cardiac hypertrophy, the underlying molecular mechanisms remain mostly unknown. Here, we show that NFATc3, miR-153-3p, and mitofusion-1 (Mfn1) constitute a signaling axis that mediates mitochondrial fragmentation and cardiomyocyte hypertrophy. Methods: Isoprenaline (ISO) was used to stimulate the hypertrophic response and mitochondrial fragmentation in cultured cardiomyocytes and in vivo. We performed immunoblotting, immunofluorescence, and quantitative real-time PCR to validate the function of Mfn1 in cardiomyocyte hypertrophy. Bioinformatic analyses, a luciferase reporter assay, and gain- and loss-of-function studies were used to demonstrate the biological function of miR-153-3p, which regulates mitochondrial fragmentation and hypertrophy by targeting Mfn1. Moreover, ChIP-qPCR and a luciferase reporter assay were performed to identify transcription factor NFATc3 as an upstream regulator to control the expression of miR-153-3p. Results: Our results show that ISO promoted mitochondrial fission and enhanced the expression of miR-153-3p in cardiomyocytes. Knockdown of miR-153-3p attenuated ISO-induced mitochondrial fission and hypertrophy in cultured primary cardiomyocytes. miR-153-3p suppression inhibited mitochondrial fragmentation in ISO-induced cardiac hypertrophy in a mouse model. We identified direct targeting of Mfn1, a key protein of the mitochondrial fusion process, by miR-153-3p. Also, miR-153-3p promoted ISO-induced mitochondrial fission by suppressing the translation of Mfn1. We further found that NFATc3 activated miR-153-3p expression. Knockdown of NFATc3 inhibited miR-153-3p expression and blocked mitochondrial fission and hypertrophic response in cardiomyocytes. Conclusions: Our data revealed a novel signaling pathway, involving NFATc3, miR-153-3p, and Mfn1, which could be a therapeutic target for the prevention and treatment of cardiac hypertrophy.


Assuntos
Cardiomegalia/patologia , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiotônicos/farmacologia , GTP Fosfo-Hidrolases/genética , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...